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Arthropods contribute importantly to ecosystem functioning but remain
understudied. This undermines the validity of conservation decisions.
Modern methods are now making arthropods easier to study, since arthro-
pods can be mass-trapped, mass-identified, and semi-mass-quantified into
‘many-row (observation), many-column (species)‘ datasets, with homo-
geneous error, high resolution, and copious environmental-covariate
information. These ‘novel community datasets’ let us efficiently generate
information on arthropod species distributions, conservation values, uncer-
tainty, and the magnitude and direction of human impacts. We use a DNA-
based method (barcode mapping) to produce an arthropod-community
dataset from 121 Malaise-trap samples, and combine it with 29 remote-
imagery layers using a deep neural net in a joint species distribution
model. With this approach, we generate distribution maps for 76 arthropod
species across a 225 km2 temperate-zone forested landscape. We combine the
maps to visualize the fine-scale spatial distributions of species richness, com-
munity composition, and site irreplaceability. Old-growth forests show
distinct community composition and higher species richness, and stream
courses have the highest site-irreplaceability values. With this ‘sideways bio-
diversity modelling’ method, we demonstrate the feasibility of biodiversity
mapping at sufficient spatial resolution to inform local management choices,
while also being efficient enough to scale up to thousands of square
kilometres.

This article is part of the theme issue ‘Towards a toolkit for global insect
biodiversity monitoring’.
1. Introduction
Arthropods contribute in numerous ways to ecosystem functioning [1] but are
understudied relative to vertebrates and plants [2]. This taxonomic bias
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undermines the validity of conservation decisions when the effects of change in climate, land use and land cover differ across taxa
[3,4]. Also, it is arguable that modern methods now make arthropods easier to study than vertebrates and plants, given that arthro-
pods can be mass-trapped and mass-identified [5,6]. Another logistical advantage is that arthropod community structure is
correlated with vegetation structure [7,8], and since vegetation can be measured remotely at large spatial scale via airborne and
spaceborne sensors [9], remote imagery could also provide large-spatial-scale information on arthropods. In fact, it is already
known that spaceborne synthetic aperture radar, and airborne light detection and ranging (LiDAR) imagery of fine-scale forest
structure can predict the distributions of entomofauna and avifauna [10–13].
ing.org/journal/rstb
Phil.Trans.R.Soc.B

379:20230123
(a) Successful governance of the biodiversity commons
Arthropod conservation should be seen in the wider context of efficient biodiversity governance. Dietz et al.’s [14] framework for
the successful governance of public goods can be usefully summarized into five elements: (i) information generation, (ii) infrastruc-
ture provision, (iii) political bargaining, (iv) enforcement and (v) institutional redesign. The first element, information generation,
asks engineers and scientists to generate high-quality, granular, timely, trustworthy and understandable information on ecosystem
status and change, values, uncertainty, and the magnitude and direction of human impacts.

Although there exists an example of the five elements working together to achieve single-species conservation (see
the electronic supplementary material: ‘Dietz et al.’s five elements’), to our knowledge, there is so far no example of the five
elements comprehensively working together to achieve multi-species conservation, in large part because the tools, study designs
and analyses needed to generate information on many species at once are complex. This complexity is a barrier to uptake, delaying
the institutional redesigns that could operationalize, finance and scale-up conservation.

Our focus in this study is therefore to demonstrate how to efficiently generate high-quality, granular, timely, trustworthy and
understandable information on status and change in arthropod biodiversity, conservation value, uncertainty, and the magnitude
and direction of human impacts.

We use the management of national forests in the United States (US) as our test case for multi-species biodiversity conserva-
tion. This management should follow the doctrine outlined in the 1960 Multiple-Use Sustained-Yield Act that requires
management and use of natural resources to satisfy multiple competing interests and to maintain the natural resources in perpe-
tuity [15–17]. Although US law mandates that each use be given equal priority, implementation is stymied by a lack of biodiversity
data such as distribution maps of large numbers of species to identify areas of high conservation value that can be protected while
still supporting extractive uses in other areas. Moreover, the species distribution maps should be regularly updated so that the
impacts of management interventions can be inferred, feeding back to adaptive management [9,18].
(b) High-throughput arthropod inventories
Now though, there are new technologies capable of efficiently and granularly capturing biodiversity information, via DNA iso-
lated from environmental samples (eDNA) and via electronic sensors (bioacoustics, cameras, radar) [5,6,9,19–24]. The eDNA
methods start with DNA-based taxonomic assignment (‘DNA barcoding’ [25]) and vary in how the DNA is collected and
processed. For instance, large numbers of arthropods can efficiently be individually DNA-extracted and sequenced to produce
count datasets [26,27]. These DNA-barcoded specimens (plus human-identified specimens) can optionally be used to annotate
specimen images to train deep-learning models to scale up identifications [5,6]. Alternatively, DNA from arthropods can be
extracted en masse from traps [28] or from environmental substrates, such as water washes of flowers (e.g. [29]) and mass-
sequenced. These latter processing pipelines are known as ‘metabarcoding’ or ‘metagenomics’, depending on whether the
target DNA-barcode sequence is polymerase chain reaction-amplified (both described in [9]).

The eDNA- and sensor-basedmethods can all produce ‘novel communitydata’,whichHartig et al. [30] describe as ‘many-row (obser-
vation), many-column (species)’ datasets, therefore making possible high spatial and/or temporal resolution and extent. Novel
community data contain some form of abundance information, ranging from counts to within-species abundance change [31,32] to
presence/absence, and because the methods are automated and standardized, the errors in these datasets tend to be homogeneous
(e.g. minimal observer effects), which facilitates their correction given appropriate sample replicates and statistical models.
(c) ‘Sideways’ biodiversity modelling and site irreplaceability ranking
It is natural to think about combining novel community data with copious environmental-covariate information in the form of
continuous-space remote-imagery layers (and/or with continuous-time acoustic series) to produce continuous spatio(-temporal)
biodiversity data products [9,30,33–40]. Here, we do just this, combining a point-sample dataset of Malaise-trapped arthropods
with continuous-space Landsat and LiDAR imagery within a joint species distribution model (JSDM [40–43]). We were able to
produce distribution maps for 76 arthropod species across a forested landscape. Because this landscape is characterized by over-
lapping gradients of environmental conditions (e.g. elevation, distance from streams and roads) and mosaics of management (e.g.
clearcuts, old-growth), we can estimate the effects of different combinations of natural and anthropogenic drivers on arthropod
biodiversity, including combinations that were not included in our sample set. We can also subdivide the landscape into
management units and rank them by conservation value, to inform decision-making in this multi-use landscape.

The above approach is a direct test of a protocol originally proposed by Bush et al. [9] and more formally described by Pollock
et al. [44] under the name ‘sideways’ biodiversity modelling. In short, sideways biodiversity models (i) integrate ‘the largely inde-
pendent fields of biodiversity modelling and conservation’ [44, p. 1119] and (ii) include large numbers of species in conservation
planning instead of using habitat-based metrics. Or in plain language, we use remote-sensing imagery to fill in the blanks between
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Figure 1. Sampling design and taxonomic diversity of the Malaise trapping campaign. (a) Sampling points in and around the H.J. Andrews Experimental Forest (red
line), OR, USA. The study area consists of old-growth and logged (grey patches) deciduous and evergreen forest under different management regimes. Arthropods
were sampled with Malaise traps at 89 sampling points in July 2018, with one trap at 57 points (white circles) and with two traps 40 m apart at 32 points (white
squares). Elevation indicated with a green to white false-colour gradient. (b) Taxonomic distribution of all detected operational taxonomic units (OTUs) from the
samples. Node size and colour are scaled to the number of OTUs. See the electronic supplementary material, figure S4 for a heat tree of the 190 included OTUs.
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our sampling points, which creates a continuous map of arthropod biodiversity that we can use to study arthropod ecology and
guide conservation.
2. Material and methods
In short, we combine DNA-based species detections, remote-sensing-derived environmental predictors, and joint species distribution
modelling to predict and visualize the fine-scale distribution of arthropods across a large forested landscape. We use the joint predictions
from the JSDM to map species richness, compositional distinctiveness and conservation value across the landscape. For the detailed
protocol and explanations of the field, laboratory, bioinformatic and statistical methods, see electronic supplementary material: Materials
and Methods.
(a) Model Inputs
(i) Field data collection
We collected with 121 Malaise-trap samples for seven days into 100% ethanol at 89 sampling points in and around the H.J. Andrews
Experimental Forest (HJA), OR, USA in July 2018 (figure 1). Sites were stratified by elevation, time since disturbance, and inside and out-
side the HJA (inside, a long-term research site with no logging since 1989; outside, continued active management). HJA represents a range
of previously logged to primary forest, but with notably larger areas of mature and old-growth forest reserves than the regional forest
mosaic, which consists of short-rotation plantation forests on private land and a recent history of active management on public land.
(ii) Wet-laboratory pipeline and bioinformatics
(iii) DNA extraction and sequencing
We extracted the DNA from each Malaise-trap sample by soaking the arthropods in a lysis buffer and sent it to Novogene (Beijing, China)
for whole-genome shotgun sequencing.
(iv) Creating a barcode reference database using Kelpie in silico polymerase chain reaction
On the output fastq files, we carried out ‘in silico’ PCR using Kelpie 2.0.11 [45] and the BF3 + BR2 primers from [46], outputting 5560
unique DNA-barcode sequences. After 97%-similarity clustering and filtering for erroneous sequences, we were left with 1225 operational
taxonomic units (OTUs) as the reference barcode set.
(v) Read mapping to reference barcodes
We then mapped the reads of each sample to the reference barcodes, creating a 121− sample × 1225−OTU table. A species was accepted as
being in a sample if reads mapped at high quality along more than 50% of its barcode length, following acceptance criteria from Ji et al. [47].
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(vi) Environmental covariates
To predict species occurrences in the areas between the sampling points, we collected 58 continuous-space predictors (electronic sup-
plementary material, table S1), relating to forest structure, vegetation reflectance and phenology, topography, and anthropogenic
features, restricting ourselves to predictors that can be measured remotely. The forest-structure variables were from airborne LiDAR
data collected from 2008 to 2016, which correlate with forest structure in US Pacific northwest coniferous forests, such as mean diameter,
canopy cover and tree density [48]. The vegetation-related variables came from Landsat 8 individual bands, plus standard deviation,
median, 5% and 95% percentiles of those bands over the year, and indices of vegetation status, e.g. normalized difference vegetation
index. Both the proportion of canopy cover and annual Landsat metrics were calculated within radii of 100, 250 and 500m, given that
vegetation structure at different spatial scales is known to drive arthropod biodiversity [49]. The topography variables were calculated
from LiDAR ground returns, including elevation, slope, eastness and northness split from aspect, topographic position index, topographic
roughness index (TRI) [50], topographic wetness index [51] and distance to streams, based on a vector stream network (http://oregonex-
plorer.info, accessed 24 October 2019). The anthropogenic variables include distance to nearest road, proportion of area logged within the
last 100 and within the last 40 years, within radii of 250, 500 and 1000m, and a categorical variable of inside or outside the boundary of the
HJA. They are not directly derived from remote-sensing data, but we included them because they could be derived from remote-sensing
imagery. We then reduced our 58 environmental covariates to 29, removing the covariates that were most correlated with the others (as
measured by variance inflation factor). The 29 retained covariates include six anthropogenic activities, two raw Landsat bands, seven indi-
ces based on annual Landsat data, six canopy/vegetation-related variables from LiDAR, and eight topography variables (electronic
supplementary material, table S1 and figure S5), which we mapped across the study area at 30m resolution.

(b) Statistical analyses
(i) Species inputs
We converted the sample × species table to presence-absence data (1/0), and we only included species present at six or more sampling
sites across the 121 samples. Our species dataset was thus reduced to 190 species in two classes, Insecta and Arachnida (figure 1b).

(ii) Joint species distribution model
The general idea behind species distribution modelling is to ‘predict a species’ distribution’. We use each species’ observed incidences
(1/0) at all sampling points, plus the environmental-covariate values at those points, to ‘fit’ a model that predicts the species’ incidences
from the covariate values. Once we have a fitted model, we use it to predict the species’ probability of presence over the rest of the
sampling area, where the environmental-covariate values are known but the species’ incidences are not. Spatial autocorrelation was
accounted by a trend-surface component. JSDMs extend individual species distribution models by additionally accounting for co-occur-
rences of species (see the electronic supplementary material: Joint Species Distribution Model).

(iii) Tuning and testing
The statistical challenge is to avoid overfitting, which is when the fitted model does a good job of predicting the species’ incidences at the
sampling points that were used to fit the model in the first place but does a bad job of predicting the species over the rest of the landscape.
Overfitting is likely in our dataset because many of our species are rare, there are many candidate remote-sensing covariates, and
we expect that any relationships between remote-sensing-derived covariates and arthropod incidences are indirect and thus complex,
necessitating the use of flexible mathematical functions.

To minimize overfitting, we used regularization and cross-validation. Regularization uses penalty terms during model fitting to favour
a relatively simple set of covariates, and cross-validation finds the best values for those penalty terms (tuning). First, we randomly split the
species incidence data from the 121 samples in 89 sampling points into 75% training data (n = 91) and 25% test data (n = 30) (electronic
supplementary material, figure S1). The training data were used to try 1000 different hyperparameter combinations in a fivefold cross-
validation design, some of which are the penalty terms, to find the combination that achieves the highest predictive performance on
the training data itself (see the electronic supplementary material: Tuning and Testing, figure S1). The model with this combination
was then applied to the 25% test data to measure true predictive performance. To fit the model, we used the JSDM R package sjSDM
1.0.5 [42], with the DNN deep neural network (DNN) option to account for complex, nonlinear effects of environmental covariates
(the DNN outperformed a linear model; see the electronic supplementary material, figure S11), which suits our dataset of many species
with few data points and many covariates.

Finally, to estimate how OTU incidence affects the variability of predictive accuracies, we also tuned a model to the whole dataset in a
fivefold cross-validation, found optimal hyperparameters, and used them in another fivefold cross-validation on the entire dataset to esti-
mate the variability of predictive area under the curve (AUCs) by OTU (see the electronic supplementary material: Variability in Predictive
AUC by OTU Incidence). We emphasize that method is only useful for estimating variability in predictive performance, given that it
potentially overestimates predictive performance, which is what we avoided by using a pure holdout in the main analysis.

(iv) Variable importance with explainable-artificial intelligence
The mathematical functions used in neural network models are unknown, but it would be useful to identify the covariates that contribute
the most to explaining each species incidences. We therefore carried out an ‘explainable-artificial intelligence‘ (xAI) analysis, using the R
package flashlight 0.8.0 [52]. In short, for each environmental-covariate, we shuffled its values in the dataset and estimated the drop
in explanatory performance on the training data. The most important covariate is the one that, when permuted, degrades explanatory
performance the most (see the electronic supplementary material: Variable importance with explainable AI (xAI)).

(v) Prediction and visualization of species distributions
Finally, after applying the final model to the test dataset, we identified 76 species that had moderate to high predictive performance
(AUC � 70%). We used the fitted model and the environmental-covariates to predict the probability of each species’ incidence in each
grid cell of the study area (‘filling in the blanks’ between the sampling points). The output of this one model is 76 individual and

http://oregonexplorer.info
http://oregonexplorer.info
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continuous species distribution maps, which we combined to carry out three landscape analyses. First, we counted the number of species
predicted to be present (probability of presence �50%) in each grid square to produce a species richness map. Second, we carried out a
dimension-reduction analysis, also known as ordination, using the t-distributed stochastic neighbour embedding (T-SNE) method
[53,54] to summarize species compositional change across the landscape. Pixels that have similar species compositions receive similar
T-SNE values, which can be visualized. Third, we calculated Baisero et al.’s [55] site-irreplaceability index for every pixel. This index
is the probability that loss of that pixel would prevent achieving the conservation target for at least one of the 76 species, where the
conservation target is set to be 50% of the species’ total incidence.

Finally, we carried out post hoc analyses by plotting site irreplaceability, composition (T-SNE), and species richness against elevation,
old-growth structural index [56] and inside/outside HJA.
rg/journal/rstb
Phil.Trans.R.Soc.B

379:20230123
3. Results
(a) Model inputs
(i) DNA/taxonomic data
The 121 samples from July 2018 were sequenced to a mean depth of 29.0 million read-pairs 150 bp (median 28.9 M, range 20.8–47.1
M). Of the 190 OTUs used in our JSDM, 183 were assigned to Insecta, and seven to Arachnida (figure 1b). All OTUs could be
assigned to order level, 178 to family level, 131 to genus level and 66 to species level (figure 1b; electronic supplementary material,
figure S4).

(b) Statistical analyses
(i) Model performance and xAI
Across all species together, the final JSDM model achieves median and mean explanatory-performance values of
AUC ¼ 0:86 and 0:86, respectively, where the AUC metric equals 1 for a model with 100% correct predictions and 0 for 100%
incorrect predictions. The model’s median and mean predictive AUC (i.e. on the test data) are 0.67 and 0.67 (electronic supplemen-
tary material, figure S2a). Predictive AUC is a measure of model generality, and the fact that explanatory AUCs are greater than
predictive AUCs demonstrates how fitting a model to a particular dataset results in a degree of overfitting. Per species, mean AUC
values range from 0 (fail completely) to 1 (predict perfectly), and this variation was not explained by species’ taxonomic family or
prevalence (per cent presence in sampling points).

Mean predictive AUC value does not increase with OTU abundance (as measured by incidence), and variability in predictive
AUC values is only weakly higher in low-incidence OTUs (electronic supplementary material, figure S12), especially for the OTUs
with high mean predictive AUCs (i.e. those used to map species richness, composition and site irreplaceability).

Out of 29 environmental covariates, 18 (electronic supplementary material, table S1) were the most important for at least one
species (electronic supplementary material, figure S2b). Elevation and TRI were the most important covariates for the most species.
Eleven environmental covariates were the most important for at least one species in terms of interaction effects of the variables,
with elevation and TRI again being the most important (electronic supplementary material, figure S8).

(ii) Prediction and visualization of species distributions
Finally, we reduced the dataset to the 76 species with individual predictive AUCs≥ 0.7 (mean = 0.834), and for each, we generated
individual distribution maps across the study area, which differ in amount and distribution of the areas with high predicted habi-
tat suitability (figure 2e–l; electronic supplementary material, figure S9). We then combined the maps to estimate the fine-scale
spatial distributions of species richness, community composition and site irreplaceability across the study area (figure 2). Site irre-
placeability, which is a core concept in systematic conservation planning, ranks each site by its importance to the ‘efficient
achievement of conservation objectives’ [57]. In practice, high-irreplaceability sites tend to house many species with small
ranges and/or species with large ranges that we wish to conserve a large fraction of, such as endangered species.

Greater species richness was predicted for areas without recent logging, especially within the northeast and southeast sectors of
the HJA, on west-facing slopes, and in the south of the study area (figure 2a). A post hoc analysis found a nonlinear increase in
species richness in the largest patches of old-growth forest, which are inside the HJA (figure 3a,b).

T-SNE ordination reveals spatial patterning in species composition (figure 2c,d ). T-SNE-1 is clearly correlated with elevation
(compare figures 1a and 3c), whereas T-SNE-2 (like species richness) appears to be correlated with the extent of surrounding old-
growth forest, but only at middle elevations (figure 3c). Finally, site irreplaceability clearly follows stream courses, which are
mostly at low elevations (figure 2b) and cover a small portion of the total landscape. As a result, post hoc analysis also shows
that irreplaceability decreases with elevation but finds no relationship between irreplaceability and surrounding old-growth
forest (figure 3d ).
4. Discussion
We combined in silico barcode-mapping data derived from 121 arthropod bulk samples in 89 sampling points spread over a
225 km2 working and primary forest with 29 environmental covariates (electronic supplementary material, figure S5) from Land-
sat, LiDAR and other layers that covered information on forest structure, vegetation condition, topography and anthropogenic
impact. We used a JSDM with a DNN to predict the fine-scale spatial distributions of 76 Insecta and Arachnida species with a
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richness. (b) Site beta irreplaceability, showing areas of forest plantation. (c,d ) T-SNE axes 1 and 2. White circles indicate sampling points, white polygons indicate
plantation areas (i.e. a record of logging in the last 100 years), and the black-line-bordered triangular area delimits the H.J. Andrews Experimental Forest (HJA;
figure 1). (e–l ) Selected individual species distributions (all species in the electronic supplementary material, figure S9), with BOLD ID, predictive AUC and preva-
lence. (e) Rhagionidae gen. sp. (BOLD: ACX1094, AUC: 0.91, prev: 0.64). ( f ) Plagodis pulveraria (BOLD: AAA6013, AUC: 0.81, prev: 0.23). (g) Phaonia
sp. (BOLD: ACI3443, AUC: 0.80, prev: 0.65). (h) Melanostoma mellinum (BOLD: AAB2866, AUC: 0.90, prev: 0.11). (i) Helina sp. (BOLD:
ACE8833, AUC: 0.73, prev: 0.23). ( j ) Bombus sitkensis (BOLD: AAI4757, AUC: 0.98, prev: 0.23). (k) Blastobasis glandulella (Bold:
AAG8588, AUC: 0.86, prev: 0.18). (l ) Gamepenthes sp. (BOLD: ACI5218, AUC: 0.77, prev: 0.57).
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Figure 3. Post hoc analysis of species richness, composition and irreplaceability patterns in figure 2, in relation to an old-growth structural index (OGSI) map, from
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high degree of estimated predictive performance (all individual predictive AUCs > 0.7, mean = 0.834; electronic supplementary
material, figure S2a). The model made good use of the 29 environmental covariates, with 18 of them being the most important
for at least one species (electronic supplementary material, figure S2b), with elevation and TRI most important covariates for
the most species. These two covariates were also the most frequently most important in terms of their interactions with other
covariates (electronic supplementary material, figure S8).

By interpolating to create continuous species distribution maps and combining them, we created granular maps of arthropod
biodiversity metrics: species richness, community composition and site irreplaceability (figure 2). We observed post hoc that species
richness is higher and that species composition is distinct in the largest patches of old-growth forest (figure 3b,c), but not exclu-
sively so. Irreplaceability, as we have defined it here using Baisero et al.’s [55] formulation, which does not take connectivity or
ecosystem functions into account, is highest along stream courses (figure 3d ), which are dominated by species with high
occurrence probabilities covering a small area (electronic supplementary material, figure S9). Irreplaceability is not higher in
old-growth forest, given that old-growth is not a rare habitat in our study area. We consider the patterns observed in figure 3
to be hypotheses for future testing, and thus we do not calculate statistical significance values.

A biodiversity map is more understandable than is an analysis of data points and can be compared directly with land-use maps.
In principle, these datasets and products can also be timely, given that the creation of DNA-based datasets can be outsourced to
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commercial laboratories in some countries with turnaround times measured in weeks. Information quality can be assessed via pre-
diction performance (electronic supplementary material, figure S2a), and even trustworthiness can be assessed via a combination of
proof-of-work GPS surveyor tracking and independent re-sampling, given that sampling is standardized [30].

In summary, we show how to generate information on arthropod spatial distributions with a high-enough resolution to make it
useful and understandable for local management while also being efficient and standardized enough to scale up to thousands of
square kilometres. However, as shown by the many species with low predictive AUCs (electronic supplementary material, figure
S2a), future work will be needed to improve how error is accounted for when generating model outputs [30,32], and we discuss
methods for doing this in the electronic supplementary material: Caveats. We conclude by briefly reviewing potential applications
of this approach.

(a) Potential applications of efficient, fine-scale and large-scale species distribution mapping
This study demonstrates how the major steps of species distribution mapping are enjoying major efficiency gains [9,19,24,59].
Large numbers of point samples can be characterized to species resolution via DNA sequencing and/or electronic sensors,
large numbers of environmental covariates are available from near- and remote-sensing sources [60], and graphics processing
unit-accelerated deep learning algorithms can be used to both accelerate and improve model fitting on these larger datasets
[42,61]. Although this study focused on arthropods, a wide range of animal, fungal and plant taxa can be detected using DNA
extracted from water, air, invertebrate and soil samples [20,29,36,62–68], with river networks being an especially promising
way to scale up sampling over large areas [63,69].

As a result, it is possible to envisage implementing Pollock et al.’s [44] vision of using ‘sideways’ species-based biodiversity
monitoring to subdivide whole landscapes for ranking by conservation value (see also [38]). One potential benefit would be to
interpret remote-sensing imagery in terms of species compositions, thus improving the efficiency of habitat-based offset schemes,
such as England’s Biodiversity Net Gain legislation, which has been criticized for undervaluing some habitat types, such as
scrubland, that are known to support high insect diversity and abundance [70].

Recent studies have also shown that timely and/or fine-resolution biodiversity distribution data can potentially improve conser-
vation decision-making, over that informed by historical distribution data. Ji et al. [64] used 30 000 leeches mass-collected by park
rangers to map for the first time the distributions of 86 species of mammals, amphibians, birds and squamates across a 677 km2

nature reserve in China, finding that domestic species (cows, goats and sheep) dominated at low elevations, whereas most wildlife
species were limited to mid- and high-elevation portions of the reserve. Before this study, no comprehensive survey had taken place
since 1985, impeding assessment of the reserve’s effectiveness, which is a general problem in themanagement of protected areas [71].
Chiaverini et al. [72] used camera-trap data to extrapolate the distributions of vertebrate species richness across Borneo and Sumatra
and found that high species richness areas did not correlate well with the International Union for Conservation of Nature range
maps, which are based on historical distribution data (https://www.iucnredlist.org, accessed 18 April 2022). Finally, Hamilton
et al. [3] compiled decades of standardized biodiversity inventory data for 2216 species in the continental USA and interpolated
to identify areas of unprotected biodiversity importance (using a measure similar to site irreplaceability, i.e. protection-weighted
range-size rarity). Because the resulting maps were granular (990m), Hamilton et al. [3] were able to compare species distributions
with land tenure data, including protected areas, and found large concentrations of unprotected species in areas not previously
flagged in continental- and regional-scale analyses, in part owing to the inclusion of taxa not normally included in such analyses
(especially plants, freshwater invertebrates and pollinators).

(b) Conclusion
A major difficulty for basic and applied community ecology is the collection of many standardized observations of many species.
DNA-based methods provide capacity for collecting data on many species at once, but costs scale with sample number. By con-
trast, remote-sensing imagery provides continuous-space and near-continuous-time environmental data, but most species are
invisible to electronic sensors. By combining the two, we show that it is possible to create a combined spatio(temporal) data
product that can be interrogated in the same way as an exhaustive community inventory.

Data accessibility. Raw sequence data are archived at NCBI Short Read Archive BioProject PRJNA869351. All scripts and data tables (from bioinfor-
matic processing to statistical analysis to figure generation) are available from the GitHub respository: https://github.com/chnpenny/HJA_
analyses_Kelpie_clean/releases/tag/v1.1.0 and archived at https://zenodo.org/records/8303158 [73].

Supplementary material is available online [74].
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Dietz et al.’s five elements and the creation of a biodiversity offset7

market8

A rare example of all five elements working together to achieve biodiversity conservation is the UK District Licensing9

offset market for the great crested newt (Triturus cristatus). Until recently, builders had been required to survey10

for the newt when their plans might affect ponds, and to respond to newt detections by paying for mitigation11

measures. Traditional surveys required at least four visits per pond during the short breeding season. After Biggs12

et al. [2015] showed that a single environmental-DNA (eDNA) water survey per pond, analysed with probe-based13

quantitative PCR (qPCR), could detect the newt with equal sensitivity (i.e. eDNA information is high-quality and14

granular), the UK government authorised newt eDNA surveys, and a private laboratory market grew to provide the15

infrastructure for timely and trustworthy information, via response times of a few days and an annual proficiency16

test. The switch to eDNA increased survey efficiency, but still left in place the UK’s reactive approach to newt17

conservation (‘mitigate after impact’). Mitigation measures, such as translocation, can delay building by over a year.18

In 2018, the UK government took further advantage of eDNA’s detection efficiency by implementing an institutional19

redesign with the District Licensing scheme, where hundreds of ponds across one or more local planning authorities20

are first systematically surveyed with eDNA [Natural England, 2019]. The data are used to fit a species distribution21

model, which is converted to an understandable map of discrete risk zones for the newt. Builders can now meet22

their legal obligations at any time by paying for a license, the cost of which depends on their site’s size, risk-zone23

level, and number of affected ponds, eliminating delay. The licence fees fund the proactive creation and long-24

1



term management of compensation habitat, including four new ponds per affected pond. Compensation habitat25

is directed toward Strategic Opportunity Areas, which reflect planning-authority building aspirations (political26

bargaining), and enforcement is through the same processes that apply to all planning permissions.27

Materials and Methods28

Model Inputs29

Field data collection30

We collected 121 Malaise-trap samples of arthropods at 89 sampling sites in and around the H.J. Andrews Exper-31

imental Forest and Long-Term Ecological Research site (HJA), Oregon, USA in July 2018. Sites were stratified32

(as best as possible while yielding to logistical constraints) based on elevation and time since disturbance. Sites33

were also stratified between inside and outside the HJA to capture landscape-scale differences between a long-term34

ecological research site where no logging has occurred since 1989 and neighboring sites within a landscape context35

with continued active management. Each trap was left to collect for seven days, and samples were transferred to36

fresh 100% ethanol to store at room temperature until extraction. In 32 of the sites, two Malaise traps were set37

40m apart, and in the other 57, only one trap was set (Figure 1a). In August 2018, we repeated the sampling and38

processed all 242 samples together, but we have analyzed only the July samples for this study.39

Wet-lab pipeline and bioinformatics40

We follow the SPIKEPIPE protocol from Ji et al. [2020], where we map paired-end reads from Illumina shotgun-41

sequenced samples to a reference dataset of DNA barcode sequences. In shotgun sequencing, the total DNA of each42

sample is sequenced (the term shotgun refers to the random subset of the total DNA that gets sequenced), and43

the output ‘reads’ are ‘mapped’ (matched) to a reference set of barcodes. This approach relies on the enormous44

data output of Illumina sequencers, since only ∼ 1/4000 reads is from a DNA barcode, as opposed to the rest of45

the genome.46

A major benefit of the SPIKEPIPE method is reduced workload since all that is needed is to extract DNA from each47

sample before sending to a sequencing center. The main disadvantage is that species present at low overall biomass48

are unlikely to be detected (although this is also a partial advantage in that any sample cross-contamination is49

also unlikely to be detected). However, low-biomass species are less likely to contribute meaningfully to species50

distribution modelling since the numbers of incidences for rare species are, by definition, low.51

An important difference of this study from Ji et al. [2020] is that their study used a pre-existing reference set of52

DNA barcodes [Wirta et al., 2014], whereas we generate our reference set directly from the same shotgun-sequenced53
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datasets, using the program Kelpie [Greenfield et al., 2019], which is an in-silico PCR program.54

For this study, we only analyzed the July 2018 samples (n = 121), but the arthropod samples of both sessions were55

together extracted, sequenced, analyzed, and assigned to taxonomies.56

DNA extraction and sequencing57

Before extraction, we kept only the heads of insects with body sizes longer than 2 cm. DNA was non-destructively58

extracted by soaking the samples in 5X lysis buffer while shaking and incubating the samples at 56 ◦C for 60 h [for59

more details, see Ji et al., 2020].60

To the lysis buffers, we added a DNA spike-in standard of two beetle species in a 9 : 1 ratio. We shotgun-61

sequenced all 242 samples (PE 150, 350 bp insert size) to a mean depth of 29.0 million read pairs (range 21-62

47) on an Illumina NovaSeq 6000 at Novogene (Beijing, China). We used TrimGalore 0.4.5 (https://www.63

bioinformatics.babraham.ac.uk/projects/trim_galore, accessed 10 Sep 2021) to remove residual adapters64

(--paired --length 100 -trim-n).65

Creating a barcode reference database using Kelpie in-silico PCR66

In physical PCR, two specially designed DNA sequences known as PCR primers are used to amplify (make many67

copies of) a target sequence, which, here, is the portion of the mitochondrial cytochrome oxidase subunit I (COI)68

gene that is widely used as the taxonomically informative ‘DNA barcode’. If we had tried to use physical PCR69

to construct a reference library of DNA barcodes from the Malaise trap sample set, we would have needed to70

individually separate, sort, identify, extract, and PCR many hundreds of specimens.71

Instead, we used a recently available shortcut known as ‘in-silico PCR’, using a software package called Kelpie72

[Greenfield et al., 2019]. Using the shotgun-sequence read files from the Malaise-trap samples, Kelpie carries73

out a computer search for reads that match the two ends of the target DNA barcode and then searches for74

overlapping reads, ultimately assembling DNA barcode sequences from the shotgun datasets. In our case, we use75

the BF3+BR2 primers from Elbrecht et al. [2019], which bookend a 418-bp fragment of the COI DNA barcode.76

After running Kelpie on all individual and groups of Malaise trap samples, Kelpie assembled 5560 unique DNA-77

barcode sequences, some more abundant than others.78

We first used FilterReads to reduce the shotgun datasets to reads that resemble COI sequences (FilterReads -qt79

30 +f GenBank 24919 COI C99 20.mer 25pct input.fq), using a reference kmer dataset GenBank 24919 COI C99 20.mer80

(accessed 3 Aug 2021). This step is optional but greatly increases efficiency. We then used Kelpie 2.0.1181

[Greenfield et al., 2019] to carry out in-silico PCR on the filtered datasets (Kelpie -f CCHGAYATRGCHTTYCCHCG -r82

TCDGGRTGNCCRAARAAYCA -primers -filtered -min 400 -max 500). Binaries for both are at https://github.83
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com/PaulGreenfieldOz/WorkingDogs/tree/master/Kelpie_v2 (accessed 20 Nov 2023). Kelpie mimics PCR on84

shotgun datasets by finding reads that include the forward primer sequence and step-by-step overlapping reads85

until a read matching the reverse primer is found. The advantages are that it is trivial to switch primers, lab86

workload is reduced, there can be no PCR error or PCR contamination, and the primer regions are returned.87

The main disadvantage of Kelpie is that low-abundance species in a sample are usually not detected since every88

species requires enough reads in the dataset to complete the assembly from the forward to the reverse primer.89

That said, low-biomass OTUs are unlikely to contribute much to modelling, as they are also likely to exhibit low90

prevalence (few detection events) in the dataset. Nonetheless, we still tried to retrieve as many OTUs as possible91

by running Kelpie individually on each of the 242 samples and also running on concatenated fastq files made up92

of sample clusters (each site and its five nearest neighbors). The logic for the two steps is that even rare species93

might be abundant somewhere. In our experience, it is not helpful to concatenate large numbers of sequence files94

because rare amplicons look like error variants when there also exists in the dataset a similar but abundant amplicon95

sequence. Kelpie removes such rare amplicons as part of its error correction procedure. We combined the Kelpie96

outputs, gave the sequences unique names, and dereplicated, resulting in 5560 unique sequences.97

The variation represented by these 5560 unique sequences derives from multiple causes: true genetic differences98

among species, true genetic diversity within species, errors generated by the Illumina sequencer, and rare pseudogene99

sequences from mitochondrial DNA that got copied into the nuclear genome at various points in each species’ past100

and been released from purifying selection. The latter are known as NUMTs (nuclear mitochondrial DNA).101

We assigned taxonomies to all 5560 unique sequences on https://www.gbif.org/tools/sequence-id (accessed102

3 Aug 2021), which provides three sequence-match classes (‘exact’, ‘close’, and ‘no’ match). For the exact103

match class, we retained the assignment to species, for the close match class, we retained the assigned genus and104

used NA for the species epithet, and for the weak match class, we retained the assigned order and used NA for105

lower ranks. We deleted all sequences that received a ‘no match’ or were not assigned to Insecta or Arachnida,106

after which, we used vsearch 2.15.0 to cluster the sequences into 1538 97%-similarity OTUs.107

Although PCR error has been avoided, Kelpie amplicons unavoidably still include Illumina sequencer error, in-108

cluding homopolymers (incorrect nucleotide repeats), which induce frameshift mutations. However, because the109

amplicon is of a protein-coding gene, we aligned the OTU representative sequences by their inferred amino-sequences110

(‘translation alignment’), using the invertebrate mitochondrial code in RevMet 2.0 [Wernersson, 2003], after which111

we curated the sequences by eye, fixing obvious homopolymer errors and removing sequences with uncorrectable112

stop codons and those that failed to align well to the others, the latter two likely being ‘Numts’ (pseudogenes from113

nuclear insertions of mitochondrial sequences). This left us with 1520OTUs.114

In the final step, we read in the taxonomies of these OTUs and visually checked pairs of OTUs that had received115

very similar taxonomies (ID’d to the same BOLDID) for which one OTU contained many reads and the other116
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contained few. These are likely oversplit OTUs, and we removed the smaller of the OTUs. In rare cases, there are117

multiple OTUs that match to the same BOLDID, but one or more of them are only BLAST weak matches to that118

BOLDID and contain many reads, suggesting that these OTUs are true species for which reference sequences do119

not exist. Our bias throughout is to remove OTUs that could be artefactual splits of true OTUs, because these120

small OTUs will interfere with read mapping and do not add true diversity to the dataset. We were left with121

1225OTUs as the reference barcode set, and to this fasta file, we added the two spike-in COI sequences.122

Read mapping with minimap2, samtools, and bedtools123

We then used the newly constructed reference barcode dataset to detect species in each sample’s shotgun reads.124

This is done by applying a commonly used tool from genomics known as a sequence alignment program, which125

maps individual Illumina reads against one or more reference sequences (usually a genome, but here the reference126

barcodes). Reference barcodes to which multiple Illumina reads are aligned are taken to be present in that sample,127

as long as the read mappings are (1) high quality (close match, low estimated error rate, map in the correct128

orientation) and (2) cover more than 50% of the barcode length, under the logic that if a species is truly in a129

sample, reads from the whole COI gene will be in the sample and will thus ‘map’ along the length of that species’130

barcode. These acceptance criteria were determined with experimental mock samples of known composition [Ji131

et al., 2020]. The output of mapping all samples individually to the reference barcodes is a sample x species132

table. After removing a few samples that were missing sample-identifying metadata or had no mapped reads to133

the spike-ins, we were left with 237 samples of the original 242, of which 121 were from sampling session 1 (July134

2018).135

We used minimap2 2.17-r941 (Li 2018) in short-read mode (minimap2 -ax sr) to map the read pairs from each136

sample to the 1225 reference barcodes and the 2 spike-in sequences. We used samtools 1.5 [Li, 2018] to sort,137

convert to bam format, exclude reads that were unmapped or mapped as secondary alignments and supplementary138

alignments, and include only ‘proper-pair’ read mappings (mapped in the correct orientation and at approximately139

the correct distance apart) at ≥ 48 ‘mapping quality’ (MAPQ) (samtools view sort -b -F 2308 -f 0x2 -q140

48).141

MAPQ = −10log10(prob that mapping position is wrong)

We accepted MAPQ ≥ 48 after inspection of the highly bimodal distribution of quality values, with most reads142

giving MAPQ = 60 (probability of error = 0.000001) or 0 (i.e. maps well to multiple locations). MAPQ = 48143

corresponds to an error probability ∼ 0.000016. Informally, we have found that limiting quality to only the highest144

value, 60, has little effect on the results, whereas including low-quality mappings (-q 1) leads to more false-positive145

hits (data not shown). Read mapping data were output to samtools idxstats files.146

The output for each sample is the number of mapped reads per OTU and spike-in that have passed the above147
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filters. However, it is still possible for a barcode to receive false-positive mappings. Thus, we applied a second148

round of filtering. We expect that if a species is truly in a sample, reads from that sample will map along the length149

of that species’ barcode, resulting in a high percentage coverage. In contrast, if reads map to just one location150

on a barcode, even at high MAPQ, the percentage coverage will be low, and we consider those mappings to be151

false-positive detections caused by that mapped portion of the barcode being very similar to a species that is in152

the sample but not in the reference database. We used bedtools 2.29.2 [Quinlan and Hall, 2010] to calculate the153

number of overlapping reads at each position along the reference sequence (genomecov -d). The percent coverage is154

the fraction of positions in a barcode covered by one or more mapped reads. We kept only those species detections155

with percent coverage ≥ 50%, following recommendations from an experiment in Ji et al. [2020].156

Sample X Species table creation157

We imported the sample metadata and the samtools and bedtools outputs into R 4.0.4 [R Core Team, 2022] for158

downstream processing into a sample x OTU table. After removing a few sites that had missing sample-identifying159

metadata or had no mapped reads to the spike-ins, we were left with 237 samples out of the original 242. These160

samples represented two sampling sessions, of which 121 were in sampling Session 1 (July 2018) and 116 in Session161

2 (August 2018). The 121 samples from Session 1 were distributed over 89 sites, of which 57 sites had 1 Malaise162

trap-sample and 32 sites had 2 samples. For this study, we used only the Session 1 samples. The two sessions only163

partially overlapped in species composition, meaning that it was not possible to test a Session 1 model on Session164

2.165

Environmental covariates166

We used environmental covariates related to forest structure, vegetation reflectance and phenology, topography,167

anthropogenic features, and location to model arthropod incidence. We extracted the forest structure variables168

from lidar data collected from 2008 to 2016, consisting of 95th percentile canopy height, canopy cover above 2 and169

4m (calculated as the proportion of returns for a 30m pixel above that height) and proportional area with canopy170

cover (calculated as the proportion of area with vegetation greater than 4m) (Table 1S). These types of measures171

of canopy height and cover are correlated with field observations of forest structure in Pacific Northwest coniferous172

forests, such as mean diameter, canopy cover, and tree density [Kane et al., 2010]. We calculated vegetation indices173

from Landsat 8 images over the year, 2018, including Normalized Difference Vegetation Index (NDVI), Normalized174

Difference Moisture Index (NDMI), and Normalized Burn Ratio (NBR). From these, we calculated annual metrics175

of standard deviation, median, 5% and 95% percentiles over the year 2018, as well as using raw bands from a176

single cloudless image from 26/07/2018 (within 7 days of data collection). Both the proportion of canopy cover177

and annual Landsat metrics were calculated within the radii of 100, 250 and 500m, given that vegetation structure178
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at different spatial scales is known to drive arthropod biodiversity [Müller et al., 2014]. We created topographic179

predictors based on 1m resolution bare-earth models from lidar ground returns, including elevation, slope, Eastness180

and Northness split from aspect, Topographic Position Index (TPI), Topographic Roughness Index (TRI) [Wilson181

et al., 2007], Topographic Wetness Index (TWI) [Metcalfe et al., 2018], and distance to streams, based on a vector182

stream network (http://oregonexplorer.info, accessed 24 Oct 2019). We used spatial data on anthropogenic183

activities to create predictors based on distance to nearest road, proportion of area logged within the last 100 and184

40 years within radii of 250, 500 and 1000m, and a categorical variable of inside or outside the boundary of the H.J.185

Andrews Experimental Forest. We used the raster and sf packages for R for all spatial analysis [Hijmans, 2022,186

Pebesma, 2018]. We mapped all 58 candidate environmental covariates (Table 1S) at 30m resolution — either187

matching native resolution (e.g. Landsat), or aggregated from finer resolution data (e.g. lidar data), and projected188

them to the UTM 10N grid.189

Statistical Analyses190

Species inputs191

For modelling, we converted the sequence-read-number OTU table to presence-absence (1/0), and we only included192

OTUs present at ≥ 6 sampling sites across the 121 samples. Our species dataset thus consisted of 190 OTUs in193

two classes, Insecta and Arachnida (Figure 1b).194

Environmental covariates195

To avoid collinearity, which would pose problems for the application of explainable AI [xAI, see below; Hooker et al.,196

2021], we iteratively calculated the Variance Inflation Factor [VIF; Zuur et al., 2007] on the 58 scaled candidate197

covariates, eliminating the highest scoring variable each time until all VIF values were < 8. The exception is that198

we forced the covariates elevation and inside/outside H.J. Andrews Forest to remain within the set of predictors199

irrespective of their VIF value, for a total of 29 predictors.200

Joint Species Distribution Model201

The general idea behind species distribution modelling is to ”predict a species’ distribution”, using the species’202

observed incidences (presences and absences) and the combination of environmental-covariate values (i.e. the 29203

covariates) in those points, to estimate the probability of species’ incidences (i.e. to ‘fit the model’). After model204

fitting, species in the rest of the sampling area, where environmental conditions are known but species’ incidences205

are not, can be predicted, and the fitted model uses the environmental-covariate values to calculate the species’206

probability of presence. In this way, each species’ distribution is predicted across continuous space, with varying207
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degrees of accuracy.208

We used the R package sjSDM 1.0.5 [Pichler and Hartig, 2021], which is a JSDM that implements an integral209

approximation of multivariate probit models. sjSDM also includes a DNN (deep neural network) option to fit210

environmental covariates, which suits our dataset of many species with few data points and many covariates. We211

modeled the presence-absence data with a binomial distribution (probit link) in the sjSDM framework. The species212

occurrence probabilities are described as a function of a three-layer DNN on the environmental covariates in addition213

to spatial coordinates to account for spatial auto-correlation and a species covariance matrix:214

Zij = β0j +DNN(Xin) + UEiβEj + UNiβNj + (UEiUNi)βENj +MVN(0,Σij)215

Yij = 1(Zij > 0),216

in which Zij is the occurrence probability of species j at sampling site i; Yij is the observed presence of species j217

at site i; Xin is the value of environmental covariate n in sampling site i. The second part of the model describes218

the trend-surface model, which is one way to account for spatial auto-correlation [Dormann et al., 2007]: UEi
and219

UNi are the two Universal Transverse Mercator variables (coordinates) which are modeled for each species j at220

sampling site i as linear terms with coefficients βEj
and βNj

, and as interaction with coefficients βENj
; MVN is221

the multivariate normal error representing the species correlation matrix.222

Tuning and Testing223

The statistical challenge is to avoid overfitting, which is when the fitted model does a good job of predicting the224

species’ incidences in the sampling points that were used to fit the model in the first place but does a bad job of225

predicting the species over the rest of the landscape. Overfitting is most likely to occur with species that have226

few presences, with large numbers of environmental covariates, and when the model uses flexible mathematical227

functions to describe the relationships between environmental-covariates and species incidences. Unfortunately, all228

three of these conditions apply when trying to model arthropod fine-scale distributions. Many species are rare,229

there are many candidate remote-sensing covariates, and we expect that any relationships between remote-sensing-230

derived covariates and arthropod incidences will be indirect and thus complex, necessitating the use of flexible231

mathematical functions.232

To minimise the risk of overfitting, we applied a combination of regularisation and cross validation. Regularisation233

is a statistical method that reduces small (or uncertain or collinear) covariate effects to zero. In this way, the234

initially high complexity of a DNN algorithm can end in a DNN model with a low effective complexity with good235

generality, even for small data.236

In Figure 1SB2, we list nine model ‘hyperparameters’, which consist of the weighting between lasso and ridge237

regularisation (αe,s,b) and their strengths (λe,s,b) for each of the environmental, spatial, and species covariance238

components, plus the dropout rate, the hidden structure for the DNN, and the learning rate of the model (Figure239
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1SC). These hyperparameters govern the neural network’s structure and how it is fit to the data, and the challenge240

in fitting is to select optimal regularisation values (the alphas and lambdas, and the dropout rate) for accurate241

prediction, which we do via 5-fold, nested cross-validation, in a procedure known as model tuning.242

First, we randomly split the 121 data points from July 2018 into 75% training data (n = 91) and 25% test data243

(n = 30) (the latter also known as hold-out data, or outer split), and we ensured that when two Malaise traps had244

been placed at the same site, they were assigned to the same split (Figure 1SA).245

We then worked with only the training dataset for model tuning (i.e. inner split). We split the training dataset into246

five ‘folds’ (=sections), also ensuring that data from pairs of traps placed at the same site were assigned to the same247

fold. We chose one combination of hyperparameter values, fit the model with those hyperparameter values to 4 of248

the 5 folds (as a single dataset), and measured how well this fitted model predicted presences and absences in the249

sites from the fifth fold (the validation dataset), which the model had not been fit to. This is the model’s predictive250

performance on that fold with that hyperparameter combination. Because we chose 5-fold CV, we repeated this251

procedure five times, each time predicting a different fold of the five (Figure 1SB1). We calculated the model’s252

mean predictive performance over the five validation datasets and the model’s mean explanatory performance on253

the five training datasets. We repeated this five-fold CV procedure for 1000 hyperparameter combinations sampled254

from the total set of possible hyperparameter combinations (n = 7200), recording all 1000 mean performances in255

Figure (1SC) (black pts: mean predictive performances. blue pts: mean explanatory performances). We used six256

metrics to evaluate predictive and explanatory performance: AUC (area under the receiver operating characteristic257

curve), positive likelihood ratio, Pearson’s correlation coefficient, log-likelihood, True Skill Statistic (TSS), and258

Nagelkerke’s R2 [Lawson et al., 2014, Wilkinson et al., 2021, see Supplementary Information].259

From the set of 1000 models, we chose the model with the hyperparameter combination that produced the highest260

predictive performance (designated as the tuned model) and fit it to the full training dataset (i.e. no folds). This261

is the Final fit model (Figure 1SB1), which we used to calculate explanatory performances per species. Finally,262

we also used Final fit model to predict presences/absences in the 25% test dataset that the model had never seen263

and calculated a predictive performance per species: AUCpred. The final models chosen by the other performance264

metrics behaved similarly (Figure 3S).265

For species mapping, we filtered to those species that showed moderate to good predictive performance (AUCpred >266

0.70, mean = 0.83). The key point is that because AUCpred is calculated from the test dataset, which267

the model never saw during tuning and final fitting , we can use each species’ AUCpred as a measure268

of model generality for that species, and high AUCpred species are therefore the species for which269

overfitting is a low risk.270

The purpose of regularisation is to create simpler, but not too simple, models, and this has the effect of creating271

models that are more likely to be general. When using regularisation, one is freed to use large numbers of co-272
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variates and terms in the model because regularisation typically sets most of their coefficients to 0. The cost of273

regularisation is that one needs a large number of samples for model tuning (selecting the optimal274

regularisation regime via cross-validation) and to provide an untouched dataset for measuring model275

predictive performance.276

Variability in Predictive AUC by OTU Incidence277

Finally, using a single holdout dataset for final testing does not allow estimates of the variability of our model (with278

respect to predictive AUC). We therefore ran an alternative model evaluation, using 5-fold cross validation over279

the whole dataset, which allows such an estimate. In this alternative evaluation, we followed the above methods280

to perform 5-fold cross validation, but now we used the entire dataset (121 points, 225 OTUs), with the same281

75% - 25% splits for the training and validation folds, the same number of runs (1000 different combinations of282

hyperparameters), and the same prevalence threshold (minimum presence at 6 or more sites). From these runs, we283

chose the model with the highest predictive performance, as measured by AUC only in this case, and then used284

these hyperparameters to fit a model on the full dataset, producing the alternative Final fit model. Using this285

Final fit model, we ran a further 5-fold cross validation (using a 75%-25% split) and saved the results from each of286

the five validation predictions for all OTUs. The accuracy metrics were then averaged for each OTU and displayed287

graphically (Figure 12S). We ran a polynomial regression to test whether the standard deviation of predictive288

AUCs is greater for lower-incidence OTUs (Figure 12S). Finally, we used the OTUs with AUCpred ≥ 0.70 (n = 112,289

AUCmean = 0.80) to create maps of species richness, ordination axes, and irreplaceability (Figure 13S), in the same290

way as the main analysis.291

We use this alternative analysis for the sole purpose of estimating the variability of predictive AUCs because fitting292

a model to the whole dataset increases the risk of overfitting and could potentially overestimate the predictive293

performance of the model, which is what we avoided by using a pure holdout in the main analysis. Ultimately,294

with a much larger dataset, running a nested CV with an inner k-CV (for training) and an inner k-CV (for testing)295

would be the gold standard to produce reliable estimates of the predictive AUCs and their variabilities together.296

However, given that typical ecological community datasets have many rare and many abundant species, splitting297

the data twice sequentially would likely frequently produce training and test splits with either no occurrences (for298

rare species) or only occurrences (for abundant species), making it technically impossible to fit reliable models or to299

validate them fairly. This suggests that the question of how to effectively evaluate and tune ecological community300

models should continue to be a priority for future research.301
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Figure 1S: Model tuning and training strategy. We obtained our final model by data splitting, tuning, and final
fitting. A. We randomly split the 121 Malaise traps into test (n = 30) and training subsets (91). B1. We then
randomly split the training set into five parts for tuning via a 5-fold cross-validation. For all sets of splits, when
a sampling site contained two Malaise traps, both traps were assigned to the same split. During each round of
tuning (same hyperparameters combination), five models are run with one fold as the validation data and four
folds as training. B2. We randomly sampled 1000 rows from a tuning grid of all combinations of hyperparameters
(n = 7200), and the performance of each tuning model was tested against the validation data. λ sets the overall
strength of regularization, and α sets the relative weighting of ridge vs. lasso penalties. C. After finding the best
combination of hyperparameters for the AUC (area under the ROC curve) performance metric, we fit the model
to the full training data and tested the fitted model’s predictive power against the test data. The black asterisks
are the average AUC values for the training sets, and the blue crosses are the average for the validation sets.
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Variable importance with explainable AI (xAI)302

To gain insight into the importances of the environmental covariates in our DNN, we analyzed variable importance303

using permutation and Friedman’s H statistics, as implemented in the R package flashlight 0.8.0 [Maksymiuk304

et al., 2020, Mayer, 2021].305

Variable importance is based on global permutations of variables in the dataset [Fisher et al., 2019]. The calculation306

consists of several steps: First, a variable xi from the dataset X is permuted (the values are randomised globally307

(over all sites)) and replaces the original xi in X, so that we get a new dataset Xpermuted with xi,permuted (all other308

variables are not permuted). By permuting the variable, the effect (or association) between xi and the response309

variable (e.g. species occurrence) is removed. Second, we generate new predictions with our model and dataset310

Xpermuted. Third, we calculate the predictive performance for our new predictions (here, AUC, see below). Fourth,311

we compare the new predictive performance for Xpermuted, which contains the permuted variable xi,permuted,312

with the predictive performance of the non-permuted dataset X. The difference between these two performances313

corresponds to the permutation importance of the variable xi. If xi has a strong effect on the response variable, the314

permutation importance of variable xi will be large because the model cannot predict the response well anymore.315

All these steps are repeated for all variables in the dataset. The advantage of this variable-importance protocol is316

that it does not require re-fitting the model n times for the n variables in the data set. We omitted the spatial317

component when calculating variable importance.318

Friedman’s H-statistic is used to infer the importance of variable-variable interactions [Friedman and Popescu,319

2008]. The statistic is based on partial dependencies (PD). Partial Dependencies describe the marginal effects320

of a variable on the response variable. Friedman’s H statistic additively decomposes the predict function (̂f) =321

PDi + PDj + PDi,j , assuming that it consists of main effects (PDi and PDj) and an interaction PDi,j of two322

variables. Friedman’s H statistic estimates the importance of an interaction by comparing the interaction PD with323

the individual PDs: PDi,j − PDi + PDj . Without the subtraction, the interaction (PDi,j) would accumulate the324

individual effects (we only want the ”shared” part). Finally, the variance of PDi,j − PDi + PDj divided by the325

variance of PDi,j corresponds to interaction importance between xi and xj .326

We calculated these xAI metrics based on the explanatory performance of the JSDM model, and the AUC perfor-327

mance matrix was used. The variable importance was calculated by permuting all data points of the environmental328

covariates over six repetitions to ensure a stable result. Afterwards, we chose the ten most important covariates329

based on the resulting variable importance for each species to conduct the unnormalized H-statistics. The unnor-330

malized H-statistics were chosen to ensure a fair comparison between variables. The H-statistic was calculated331

using all the data points as well.332
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Prediction and visualisation of species distributions333

Using the final model, we show three examples of how to visualize species predictions. Firstly, we used the final334

model to predict the distributions of those species with predictive AUC > 0.7. To avoid extrapolation [Norberg335

et al., 2019], we restricted predictions to a 1 km buffered, convex hull around all sample sites, edited manually336

to avoid suburban areas in the southern extreme of the study area. Further, all predictors within this area were337

restricted, or ‘clamped’, to lie within the range of predictor values across all sample points, that is, predictors338

above or below this range were given the maximum or minimum value from across the sample points, respectively339

[Anderson and Raza, 2010]. Given the stochasticity inherent in JSDM predictions based on sjSDM [Pichler and340

Hartig, 2021], each species’ prediction used the average of five separate prediction runs. We created binary species341

distributions maps by applying a 0.5 threshold on the occurrence probability values, and summed these to create a342

species richness map. We acknowledge that a common threshold for all species is not ideal, but no further analysis343

is performed with the binary maps.344
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Figure 2S: Model performance and environmental-covariate importance. (a). Explanatory AUC (range 0.67-1,
mean 0.86, median 0.86) and predictive AUC (range 0.03-1, mean 0.67, median 0.67) of the final model. Each point
is one OTU. Color indicates taxonomic class (order), and point size indicates incidence (number of Malaise traps
in which the OTU was detected). Predictive AUC value is not explained by incidence (linear model, p = 0.93, R2

= 4.5e − 05). The dashed gray line is the 1:1 line, and the solid gray line is a fitted linear regression. (b). Most
important explanatory environmental covariate for each OTU, as determined by xAI (see Variable importance with
explainable AI). Tick marks indicate each OTU’s incidence, color bands indicate individual covariates, and gray
bands indicate logical covariate groupings (Table 1S). Elevation (variable 6) and Topographic Roughness Index
(variable 7) are the most important individual environmental covariates for the most OTUs, and the six variables
in the topography group are the most important as a group. The heights of the colour bars are scaled to the
permutation importance for that OTU.
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Secondly, to map community similarity across the study area, we ordinated species predictions on two dimensions345

using T-SNE (t-Distributed Stochastic Neighbor Embedding) and mapped the two resulting ordination axes. T-346

SNE is a dimension-reduction technique where high-dimensional distances between data points are converted into347

conditional probabilities that represent similarities [van der Maaten and Hinton, 2008]. The R implementation348

[Krijthe, 2015] uses the Barnes-Hut approximation to increase performance with large data sets. The perplexity349

parameter, which controls the number of points available within the neighborhood, was set at 50.350

Finally, after applying the final model to the test dataset, we identified 76 species that had moderate to high351

predictive performance. We used the fitted model and the environmental-covariates to predict the probability of352

each species’ incidence in each grid cells in the study area (‘filling in the blanks’ between the sampling points). The353

output is 76 individual and continuous species distribution maps, which we combined to carry out three landscape354

analyses. First, we counted the number of species predicted to be present (probability of presence ≥ 50%) in each355

grid square to produce a species richness map. Second, we carried out a dimension-reduction analysis, also known356

as ordination, using the T-SNE method [van der Maaten and Hinton, 2008, Krijthe, 2015] to summarise species357

compositional change across the landscape. Pixels that have similar species compositions receive similar T-SNE358

values, which can be visualised. Third, we calculated Baisero et al. [2022] site-irreplaceability index for every pixel.359

This index is the probability that loss of that pixel would prevent achieving the conservation target for at least one360

of the 76 species, where the conservation target is set to be 50% of the species’ total incidence.361

Thirdly, we calculated the Baisero et al. [2022] site-irreplaceability index (β) per pixel across the study area as362

the combined probability that a site is irreplaceable for at least one OTU. The beta index combines species-level363

irreplaceability indices, alpha, at each site, measured as proximity-based metrics of how close a site is to being364

required to achieve a conservation target for a particular species. We used a value of 50% of each species’ total365

incidence across the study area as our conservation target.366

Finally, we carried out post-hoc analyses by plotting site irreplaceability, composition (T-SNE), and species richness367

against elevation, old-growth structural index [Davis et al., 2015], and inside/outside HJA. We consider these368

analyses to be post-hoc because we are applying them to the predicted species distributions, which we viewed369

before analysis. Thus, we consider these analyses to be hypothesis-generating exercises for future studies.370

Caveats371

Irreplaceability372

We used Baisero et al.’s (2022) method to calculate site irreplaceability. Two advantages are that it is fast to373

calculate and is stable to changes in the grid system and in the addition or subtraction of species from the dataset,374

unlike the alternative method of using selection frequency from the outcome of a systematic conservation planning375
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(SCP) algorithm, which must assume that the sites selected by any given SCP run are optimal. As Langford et al.376

[2011] point out, SCP algorithms are not widely tested for robustness to input error.377

In contrast, Baisero et al.’s (2022) site-irreplaceability value is directly calculated: defined as one minus the proba-378

bility that a site is replaceable for all species in that site. A value of 0 means that a site’s loss would still allow the379

conservation target of every species in that site to be met using other sites in the landscape, where a target is the380

proportion of a species’ range that is designated for protection. Thus, sites with higher irreplaceability values are381

characterised by higher numbers of species with high targets and/or small ranges. The latter reason is why lower382

elevations, the riverine basin (including the southern edge, which borders a river), and plantations are given high383

irreplaceability values (Figure 2 B), since these habitat types (and their associated species) cover a smaller propor-384

tion of the total landscape, and thus any species limited to them needs those sites protected for their conservation385

targets to be met (Figure 2 A). It is important to keep in mind that any measure of site irreplaceability can only386

compare the sites within the analysed landscape, meaning that a small pine plantation in a tropical rainforest would387

be scored high on irreplaceability if it contained pine-specialist arthropods. For such situations, known widespread388

and common species could be given low conservation targets, and artefactually rare habitats (the plantation in a389

rainforest) could be masked from analysis. For instance, we repeated the site-irreplaceability analysis after masking390

plantations, since recently logged forest characterises most of the Oregon forest landscape outside the H.J. Andrews391

Experimental Forest. Without plantations, areas near streams increased in irreplaceability value (Figure 10S).392

Finally, given the rapidity with which Baisero et al.’s site-irreplaceability values can be calculated, one possi-393

ble approach to account for error in predicted species distributions (Figure 9S) would be to resample the site-394

irreplaceability calculations in some way and to plot mean or median site irreplaceability values. The idea would395

be to produce a map that upweights the contributions of species with higher values of predictive performance and396

with higher occupancy probabilities. However, this proposed approach would require testing to see whether it in397

fact produces a more reliable map.398

False-negative and false-positive errors399

Despite detecting 1225 OTUs across the whole dataset, ultimately, only 190 OTUs had ≥ 6 detections. An400

independent analysis of this dataset has estimated that even the 50 most prevalent species have only a ∼ 50%401

probability of being detected when they are truly at the sampling points [Diana et al., 2022]. Consequently, we402

infer that many species absences are false negatives, which biases species prevalences and environmental-covariate403

effect sizes downwards. To increase the number of species that can be modelled, we make four recommendations:404

1. Per sample, increase DNA-sequencing depth and/or increase the concentration of DNA barcode sequences405

using hybridisation or physical PCR [e.g. Liu et al., 2016, Yang et al., 2021].406
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2. Change the trapping method. Malaise traps seem especially prone to false-negative error [Steinke et al., 2021].407

An alternative is pitfall traps, for which it is cheap to increase trapping effectiveness [by adding cups and408

guidance barriers, Boetzl et al., 2018].409

3. Increase the number of sampling points. This would allow the training and test dataset sizes to be increased,410

allow more folds in the cross-validation step, and reduce the metrics of predictive performance, since AUCpred411

variance decreases with incidence.412

4. Take multiple replicates per sampling point. Roughly, the per-bulk-arthropod-sample cost of the mitogenome413

mapping protocol is ∼ US$250, and commercial bulk-sample metabarcoding prices (i.e. physical PCR) range414

from US$100 to $350 per sample. Two traps per 89 sites would cost $17, 800 to $62, 300 total, or $79 to $277415

per km2. Using multiple traps per site directly reduces the rate of false negatives, allows one to increase the416

minimum incidence threshold for inclusion in the model, and provides the option of combining occupancy417

correction and JSDMs [Doser et al., 2022, Tobler et al., 2019, Diana et al., 2022] to account for false-negative418

error.419

Environmental covariates420

We used both LANDSAT and multiple lidar datasets collected from 2008-2016 to generate predictors for species421

data collected in 2018, following successful use of Earth Observation data for biodiversity mapping in other studies422

[Bae et al., 2019, Galbraith et al., 2015, Lin et al., 2021, Müller et al., 2009, Müller and Brandl, 2009]. The423

temporal mismatch between lidar and field data might introduce some errors [Gatziolis and Andersen, 2008] if424

major vegetation changes had occurred between acquisitions (e.g. tree mortality), but in most cases, we expect425

forests to change slowly [Zald et al., 2014]. Differences in lidar collection specifications, especially lidar pulse density,426

which varied by roughly a factor of two, might also introduce artifacts if some metrics are particularly sensitive427

[e.g. Görgens et al., 2015] or are simply hard to reproduce [e.g. metrics based on lidar intensity, Bater et al., 2011].428

That said, canopy height and cover metrics used in this study are likely relatively stable across acquisitions, and429

the LANDSAT data used in our model were collected during the sampling period, with a view to capturing species’430

niche axes such as vegetation phenology, habitat type and condition [Leitão and Santos, 2019]. An open question431

for future studies is whether it is better to include only the individual satellite spectral bands and let the DNN432

combine the bands, rather than also including known band combinations like NDVI.433

Choice of JSDM software and interpretation434

Our choice of sjSDM over other JSDM software packages was largely dictated by sjSDM’s much faster runtimes435

while exhibiting predictive performance levels that match other packages [Pichler and Hartig, 2021]. sjSDM also436
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uniquely provides the option to use a combination of regularization and a deep neural network for model fitting,437

which is appropriate for situations with large numbers of environmental covariates, such as our use of remote-sensing438

layers, and where the focus is on the predictive power of a model. To compare the effect of using a DNN, we reran439

the sjSDM model with the same setup but linear in the environmental part. The explanatory AUC of the linear440

model is higher than in the DNN model, but the predictive power is lower, showing more overfitting with the linear441

model (Figure 11S). A DNN fitting procedure thus appears to be useful for disentangling complex relationships442

between remote-sensing-derived environmental covariates and community data.443

Going forward, new JSDM software packages are being published that can exploit sample replication to account444

for false negatives and false positives [Diana et al., 2022, Tobler et al., 2019, Doser et al., 2022]. Over time, as such445

capabilities are combined with increased efficiency, the result should be more reliable predictions.446

Finally, joint species distribution models are distinguished by estimating not only species responses to environmental447

covariates (as in all species distribution models) but also by estimating correlations between all species pairs while448

accounting for environmental responses. These residual species associations can be interpreted as the effect of449

unmeasured environmental covariates and/or the effect of biotic interactions, such as competition or facilitation450

[Ovaskainen et al., 2017, Pollock et al., 2014, Warton et al., 2015]. It has proven difficult to distinguish between451

the two in practice [Dormann et al., 2018, König et al., 2021, Poggiato et al., 2021, Zurell et al., 2018, Hartig et al.,452

2023], and in this study, we are agnostic as to the interpretation of residual species correlations.453

Additional Supplementary Figures and Tables454

Table 1S: All candidate predictors for jSDM model. Predictors are grouped by origin: Lidar, Landsat, H.J. Andrews
Experimental Forest GIS data; 29 predictors were included in the model, chosen by Variance Inflation Factor (VIF)
< 8, as well as the categorical predictor of inside or outside the boundaries of H.J. Andrews Experimental Forest.
Elevation was forced to be included regardless of VIF value. The full table is in https://github.com/chnpenny/

HJA_analyses_Kelpie_clean/blob/main/05_supplement/GIS/Table_1S.xlsx
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Figure 3S: Explanatory AUC vs predictive AUC for best sjSDM models tuned according to log-likelihood, Nagelk-
erke’s R2, positive likelihood rate, correlation and TSS(true skill statistic). Each point is one OTU. Color indicates
taxonomic class (order), and point size indicates incidence (number of Malaise traps in which the OTU was de-
tected). The dashed gray line is the 1 : 1 line, and the solid gray line is a fitted linear regression.
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Figure 4S: Detailed taxonomic distribution of 190 Operational Taxonomic Units (OTUs) over two heat trees, the
Insecta and the Arachnida. Node size and color are scaled to the number of OTUs in that node. Missing taxonomic
information of species are indicated by the combination of a point, f, g or s, representing family, genus or species,
respectively, and a number, e.g. ‘.f15’.

19



Figure 5S: All candidate covariates. Sample locations are marked by the plus sign, inner black outline shows
H.J. Andrews Experimental Forest boundary and outer black outline shows extent of prediction area, Covari-
ates used in model are marked with an asterisk. See Table S-covariates for covariate descriptions. The full
figures are in https://github.com/chnpenny/HJA_analyses_Kelpie_clean/blob/main/05_supplement/Plots/

Figure_5S-full.pdf.
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Figure 6S: Explanatory (training) and predictive (test) AUCs of all OTUs by incidence. Colors correspond with
the order of OTUs. OTUs that are detected less (low incidence) show larger variance in the AUC values. The
p-value and R2 of the linear regressions are shown on the top of the plots. To be noticed, incidences of OTUs are
log-transformed.
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Figure 7S: Predictive AUCs of all OTUs by taxonomic family. Colors correspond with the family information and
they are arranged according to the order information. A linear regression shows that there is no significant effect
of family on the predictive AUCs (p-value 0.19 for this regression).

22



3
25

16

23

14
27

6

7

9
11

24

Anthropogenic

Landsat−annual

Landsat−bands

Lidar−canopy

Topography


Incidence

3 Logged.r250

6 Elevation

7 TRI

9 Eastness

11 TPI.r250

14 Rumple

16 NDVI.p5.r100

23 B5

24 Stream

25 Road

27 Canopy.2−4m

0.04, 0.04

0.02, 0.12

0.02, 0.07

0.03, 0.05

0.04, 0.04

0.03, 0.04

0.05, 0.05

0.02, 0.08

0.02, 0.03

0.02, 0.07

0.05, 0.05

Figure 8S: The most important environmental covariate with regard to interaction effects for each OTU, excluding
spatial location variables. Each tick mark on the middle ring represents an OTU, coloured by its incidence (see
legend lower left), with the outer colour bands indicating its most important individual covariate from the point of
view of interaction strength. The effect of environmental covariates on species (i.e. OTU) distributions is comprised
of its individual effect and its effect through interacting with other covariates (detail in section, Variable importance
with explainable AI (xAI)). Gray bands in the inner ring indicate covariate groupings (Table 1S). Elevation (variable
6) and TRI (variable 7) are the most important variables for the most OTUs. The heights of the colour bands are
scaled to the Friedman’s H statistic for overall interaction strength for that OTU. The ranges of overall interaction
strength for each environmental variable are shown in the legend on the right.
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Figure 9S: Individual, interpolated species distributions. The full figure is in https://github.com/chnpenny/

HJA_analyses_Kelpie_clean/blob/main/05_supplement/Plots/Figure_9S-full.pdf
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Figure 10S: Site-irreplaceability values plotted across the study area, showing HJA Experimental Forest boundaries
(black line). A. With plantations masked out. B. With plantations present. Note the higher irreplaceability values
in the unmasked part of the landscape (mostly along stream courses), which is because the species that are mainly
restricted to plantations are rarer across our study area than those in old growth forests.
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Figure 11S: Explanatory and predictive AUCs of the tuned sjSDM model applying linear fitting on the environ-
mental part (left panel) to the same model applying DNN fitting (right panel). The explanatory power (x axis,
AUC (train)) is higher but the predictive power (y axis, AUC (test)) is lower in the linear model, relative to the
DNN model.
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Figure 12S: Variability in AUC scores for all OTUs as evaluated with 5-fold cross validation. Variability in AUC
is only weakly higher for lower incidence OTUs, and mean AUC does not increase with higher incidence. a)
OTUs (boxes) in orange have AUCmean ≥ 0.70, and those in green have AUCmean < 0.70. OTUs are ordered by
increasing incidence, from occurrence at 6 sample points (far left) to occurrence at 96 sample points (far right).
The dashed red line is at AUC = 0.70, which is the threshold value for including OTUs in further analysis. b)
Standard deviation of AUC as a function of incidence. Regression lines shown from a polynomial linear model on
OTUs with AUCmean ≥ 0.70 (R2 = 0.05, p = 0.029, df = 2, 109) and with AUCmean < 0.70 (R2 = 0.19, p < 0.001,
df = 2, 110).
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Figure 13S: Alternative version of Figure 2 (main text) using OTUs with AUCmean ≥ 0.70 from 5-fold CV on
full data set (see methods in Tuning and Testing, above). JSDM-interpolated spatial variation in species richness,
irreplaceability, and composition, plus examples of individual species distributions. A. Species richness. B. Site
beta irreplaceability, showing areas of forest plantation. C-D. T-SNE axes 1 and 2. White circles indicate sampling
points, white polygons indicate plantation areas (i.e. a record of logging in the last 100 years), and the black-
line-bordered triangular area delimits the H.J. Andrews Experimental Forest (HJA, see Figure 1, main text). E-L.
Selected individual species distributions, with BOLD ID, predictive AUC, and prevalence. E. Rhagionidae gen.
sp. (BOLD: ACX1094, AUC: 0.95, Prev: 0.64). F. Plagodis pulveraria (BOLD: AAA6013, AUC: 0.72, Prev: 0.23).
G. Phaonia sp.(BOLD: ACI3443, AUC: 0.80, Prev: 0.65). H. Orthotaenia undulana (BOLD: AAB4022, AUC: 0.95,
Prev: 0.06). I. Helina evecta (BOLD: AAC2498, AUC: 0.76, Prev: 0.16). J. Diptera sp. (BOLD: AAZ4857, AUC:
0.75, Prev: 0.16). K. Blastobasis glandulella (BOLD: AAG8588, AUC: 0.91, Prev: 0.18). L. Dasyopa sp. (BOLD:
ADI1308, AUC: 0.82, Prev: 0.12)
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Christian König, Rafael O. Wüest, Catherine H. Graham, Dirk Nikolaus Karger, Thomas Sattler, Niklaus E.552

Zimmermann, and Damaris Zurell. Scale dependency of joint species distribution models challenges interpretation553

of biotic interactions. Journal of Biogeography, 48(7):1541–1551, July 2021. ISSN 0305-0270, 1365-2699. doi:554

10.1111/jbi.14106. URL https://onlinelibrary.wiley.com/doi/10.1111/jbi.14106.555

William T. Langford, Ascelin Gordon, Lucy Bastin, Sarah A. Bekessy, Matt D. White, and Graeme Newell. Raising556

the bar for systematic conservation planning. Trends in Ecology Evolution, 26(12):634–640, December 2011. ISSN557

0169-5347. doi: 10.1016/j.tree.2011.08.001.558

Callum R. Lawson, Jenny A. Hodgson, Robert J. Wilson, and Shane A. Richards. Prevalence, thresholds and559

the performance of presence-absence models. Methods in Ecology and Evolution, 5(1):54–64, January 2014.560

ISSN 2041210X. doi: 10.1111/2041-210X.12123. URL https://onlinelibrary.wiley.com/doi/10.1111/561

2041-210X.12123.562

Pedro J. Leitão and Maria J. Santos. Improving Models of Species Ecological Niches: A Remote Sensing Overview.563

Frontiers in Ecology and Evolution, 7:9, January 2019. ISSN 2296-701X. doi: 10.3389/fevo.2019.00009. URL564

https://www.frontiersin.org/article/10.3389/fevo.2019.00009/full.565

Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–3100, September566

2018. ISSN 1367-4803, 1460-2059. doi: 10.1093/bioinformatics/bty191. URL https://academic.oup.com/567

bioinformatics/article/34/18/3094/4994778.568

Meixi Lin, Ariel Levi Simons, Ryan J. Harrigan, Emily E. Curd, Fabian D. Schneider, Dannise V. Ruiz-Ramos,569

Zack Gold, Melisa G. Osborne, Sabrina Shirazi, Teia M. Schweizer, Tiara N. Moore, Emma A. Fox, Rachel570

Turba, Ana E. Garcia-Vedrenne, Sarah K. Helman, Kelsi Rutledge, Maura Palacios Mejia, Onny Marwayana,571

Miroslava N. Munguia Ramos, Regina Wetzer, N. Dean Pentcheff, Emily Jane McTavish, Michael N. Dawson,572

Beth Shapiro, Robert K. Wayne, and Rachel S. Meyer. Landscape analyses using eDNA metabarcoding and Earth573

observation predict community biodiversity in California. Ecological Applications, 31(6):e02379, September 2021.574

ISSN 1051-0761, 1939-5582. doi: 10.1002/eap.2379. URL https://onlinelibrary.wiley.com/doi/10.1002/575

eap.2379.576

Shanlin Liu, Xin Wang, Lin Xie, Meihua Tan, Zhenyu Li, Xu Su, Hao Zhang, Bernhard Misof, Karl M. Kjer,577

Min Tang, Oliver Niehuis, Hui Jiang, and Xin Zhou. Mitochondrial capture enriches mito-DNA 100 fold, en-578

abling PCR-free mitogenomics biodiversity analysis. Molecular Ecology Resources, 16(2):470–479, March 2016.579

ISSN 1755-098X, 1755-0998. doi: 10.1111/1755-0998.12472. URL https://onlinelibrary.wiley.com/doi/580

10.1111/1755-0998.12472.581

31

https://github.com/jkrijthe/Rtsne
https://onlinelibrary.wiley.com/doi/10.1111/jbi.14106
https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12123
https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12123
https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12123
https://www.frontiersin.org/article/10.3389/fevo.2019.00009/full
https://academic.oup.com/bioinformatics/article/34/18/3094/4994778
https://academic.oup.com/bioinformatics/article/34/18/3094/4994778
https://academic.oup.com/bioinformatics/article/34/18/3094/4994778
https://onlinelibrary.wiley.com/doi/10.1002/eap.2379
https://onlinelibrary.wiley.com/doi/10.1002/eap.2379
https://onlinelibrary.wiley.com/doi/10.1002/eap.2379
https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.12472
https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.12472
https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.12472


Szymon Maksymiuk, Alicja Gosiewska, and Przemyslaw Biecek. Landscape of R packages for eXplainable Artificial582

Intelligence. 2020. doi: 10.48550/ARXIV.2009.13248. URL https://arxiv.org/abs/2009.13248. Publisher:583

arXiv Version Number: 3.584

Michael Mayer. flashlight: Shed Light on Black Box Machine Learning Models, 2021. URL https://github.com/585

mayer79/flashlight. R package version 0.8.0.586

Peter Metcalfe, Keith Beven, and Jim Freer. dynatopmodel: Implementation of the Dynamic TOPMODEL Hydro-587

logical Model. 2018. URL https://CRAN.R-project.org/package=dynatopmodel.588

Jörg Müller and Roland Brandl. Assessing biodiversity by remote sensing in mountainous terrain: the potential589

of LiDAR to predict forest beetle assemblages. Journal of Applied Ecology, 46(4):897–905, August 2009. ISSN590

00218901, 13652664. doi: 10.1111/j.1365-2664.2009.01677.x. URL https://onlinelibrary.wiley.com/doi/591

10.1111/j.1365-2664.2009.01677.x.592
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